Infra-red Spectra of Carbohydrates. Part II.* Anomeric Configuration of Some Hexo- and Pento-pyranoses.

By S. A. Barker, E. J. Bourne, R. Stephens, and D. H. Whiffen.

[Reprint Order No. 5385.]
In Part I, the infra-red spectra ($730-960 \mathrm{~cm} .^{-1}$) of D -glucopyranose and of its O-methyl derivatives were discussed, and systematic differences between the α - and the β-series were observed. In this paper, similar consideration is given to the acetates of D-glucopyranose, and to derivatives of galactopyranose, mannopyranose, xylopyranose, and arabopyranose. The new spectra provide additional evidence for the tentative assignments given in Part I, and are in agreement with the rules governing the assumption by a sugar of its more stable chair form.

In previous communications (Barker, Bourne, Stacey, and Whiffen, Chem. and Ind., 1953, 196; Part I^{*}) it was shown that the infra-red spectra of D-glucopyranose derivatives display, in the frequency range $730-960 \mathrm{~cm} .^{-1}$, three principal sets of bands. Type 1 , exhibited by α-anomers at $917 \pm 13 \mathrm{~cm} .^{-1}$, and by β-anomers at $920 \pm 5 \mathrm{~cm} .^{-1}$, was attributed tentatively to a ring vibration analogous to that shown by tetrahydropyran at $875 \mathrm{~cm} .^{-1}$ (cf. Burket and Badger, J. Amer. Chem. Soc., 1950, 72, 4397), which includes a considerable contribution from the ring $\mathrm{C}-\mathrm{O}-\mathrm{C}$ antisymmetrical stretching. Type 2, revealed by α-anomers at $844 \pm 8 \mathrm{~cm} .^{-1}$, and by β-anomers at $891 \pm 7 \mathrm{~cm} .^{-1}$, was believed to be one of the $\mathrm{C}_{(1)}-\mathrm{H}$ deformation modes. Type 3 , shown by α-anomers at $766 \pm 10 \mathrm{~cm} .^{-1}$,
and by β-anomers at $774 \pm 9 \mathrm{~cm} .^{-1}$, was suspected of being the ring breathing frequency exhibited by tetrahydropyran at $813 \mathrm{~cm} .^{-1}$ (Burket and Badger, loc. cit.).

The present investigation was instigated to determine whether vibrations of types 1,2 , and 3 were exhibited by acetates of D-glucopyranose, and by derivatives of the pyranose forms of other hexoses and of pentoses. It was also an attempt to obtain further evidence for the tentative assignments given to these vibrations in Part I.

Experimental

The spectra were measured with a Grubb-Parsons single-beam spectrometer, with a sodium chloride prism, by the "Nujol" mull technique. The derivatives investigated were crystalline, unless otherwise stated, and wherever possible their authenticity was confirmed by melting point and specific rotation. The Tables show the frequencies ($\mathrm{cm} .^{-1}$) of the absorption bands, together with indications of their relative intensities. They list also those carbon atoms in the pyranose rings which carry an equatorial hydrogen atom; the assumptions made in determining these carbon atoms are (i) that a pyranose ring takes up a chair form in preference to any boat form whenever both are structurally possible, and (ii) any axial substituent (other than hydrogen) on the pyranose ring introduces an element of instability into the conformationespecially important are an axial oxygen atom on position 2 when its $\mathrm{C}-\mathrm{O}$ valency bisects the two C-O valencies of carbon atom 1, and an axial hydroxymethyl group at position 5 on the same side of the ring as an axial hydroxyl, or substituted hydroxyl, group (Reeves, J. Amer. Chem. Soc., 1950, 72, 1499).

Discussion

Identification of Anomers.-The use of the type 2 absorption peaks in the determination of anomeric configuration (Part I) has been extended to other monosaccharide derivatives of D -glucose, particularly those containing the O-acetyl group (Table 1). All those having the α-configuration displayed type $2 a$ absorption at $843 \pm 4 \mathrm{~cm} .^{-1}$. This region was transparent in the spectra of those β-anomers given in Table 1. However, derivatives of β-d-glucose in which a benzene ring was incorporated (e.g., phthalimido- and trityl derivatives) sometimes displayed absorption in this region due to the benzene ring (e.g., methyl 2:3:4-tri-O-acetyl-6-deoxy-6-phthalimido- β-d-glucopyranoside, 836 m ; phenyl α-d-glucopyranoside, 836 s ; phenyl β-D-glucopyranoside, 827 m).

Type $2 a$ absorption is shown also by octa-acetates of disaccharides in the D-glucose series possessing at least one of the sugar moieties in the α-configuration, irrespective of whether this α-unit constitutes the non-reducing (e.g., β-isomaltose octa-acetate, $825 \mathrm{~cm} .^{-1}$; β-maltose octa-acetate, $834 \mathrm{~cm} .^{-1}$) or the reducing (e.g., α-cellobiose octa-acetate, $840 \mathrm{~cm} .^{-1}$; α-gentiobiose octa-acetate, $840 \mathrm{~cm} .^{-1}$) portion of the disaccharide.

All the acetates of β-D-glucopyranose examined gave an absorption band (type $2 b$), of moderate or strong intensity, at $890 \pm 8 \mathrm{~cm} .^{-1}$ (Table 1). As stated in Part I, some of the type 1 absorptions of the α-compounds lie in the same range as the type $2 b$ absorptions of the β-compounds, and so the presence of a band at $c a .890 \mathrm{~cm} .^{-1}$ is not conclusive evidence for a β-glucose unit. There is an additional complication when dealing with acetates inasmuch as the ester groups themselves absorb near this frequency region.

An examination of the infra-red spectra of O-methyl- and O-acetyl-pyranose derivatives of other aldohexoses and of aldopentoses, of their methyl-glycosides, and of the free sugars themselves, revealed the results given in Tables 2, 3, and 4; the mean frequencies and standard deviations for the hexoses are summarised in Table 5.

It will be seen that the pyranose derivatives of mannose and galactose resemble those of glucose in that they display absorption bands of types 2(a or b) and 3, and probably also of type 1, but the high proportion of acetates in the compounds available made it impossible to distinguish bands of the latter type from other $\mathrm{C}-\mathrm{O}-\mathrm{C}$ vibrations. The type $2 a$ absorption, which is so useful for characterising derivatives of α-D-glucose, was shown by all the α-galactose and α-mannose compounds, but unfortunately a few of the β-anomers showed a band in the same region; further work will be necessary before it can be decided whether these apparent anomalies were in fact due to impurities. In the

Compound
Table 1. Derivatives of D-glucopyranose.

TABLE 2. Derivatives of D-galactopyranose.

$$
\text { Frequencies (cm. } .^{-1} \text {) of absorption peaks }
$$

α-D-Galactopyranose : $X=H ; Y=O H$. Equatorial hydrogens on $\mathrm{C}_{(1)}$ and $\mathrm{C}_{(4)}$. β-d-Galactopyranose: $\mathbf{X}=\mathrm{OH} ; \mathbf{Y}=\mathrm{H}$. Equatorial hydrogen on $\mathrm{C}_{(4)}$. The conformation in each case above is Cl (Reeves, loc. cit.).									
Frequencies (cm. ${ }^{-1}$) of absorption peaks									
C-O	vibrati	ns, type		Type $2 b$	Type 2c	Other peaks	Type $2 a$	Other peaks	Type 3
953 vs	-			-	888 vw	-	833 vs	792 vs	764 vs
947 m	926 vs	898 s		-	868 w	$\bar{\square}$	820 m		737 s
942 s	907 vs	894 s	884 s	-	870 m	857 m	839 m	822 w	$757 \mathrm{~m}, 743 \mathrm{~m}$
-	923 s	-	-	-	868 s	-	818 vs	-	784 vs
947 s	936 vs	907 vs	890 s	-	868 w	846 w	833 m	820 w	$757 \mathrm{~s}, 748 \mathrm{~s}$
947 vs		907 s		-	859 m	-	810 vs		736 vs
943 m	-	-	-	897 s	881 s	-	-	831 mbr *	776 vs
956 s	928 m	914 m	-	896 vs	865 s	-	-	-	725 m
961 s	-	-	-	914 m	876 m	-	-	814 vs	768 m
-	940 m	-	-	887 m	868 s	-	-	821 vw	782 s
-	933 m	-	-	888 m	870 m	-	-	-	757 vs
958 s	935 m	-	-	886 s	872 s	-	-	-	727 s
-	933 m		-	898 s	872 m	-	-		751 vs
952 vs	-	905 vs	-	896 s	879 w, 868 s	-	-	-	727 s

TABLE 3. Derivatives of mannopyranose.

$\mathrm{C}-\mathrm{O}-\mathrm{C}$ vibrations, type 1, etc.			Type $2 b$	Type 2c	Other peaks	Type $2 a$	Type 3	Other peaks
937 w	913 w	-	-	878 m	-	841 s	794 vs	746 s
947 vs	-	894 s	-	871 s	-	818 s	791 vs	-
-	907 s	-	-	872 s	-	824 s	798 vs	-
-	914 w	-	-	888 w	-	843 m	808 s	56
928 vs	916 vs	-	-	886 vs	-	837 w	$818 \mathrm{~m}, 789 \mathrm{~s}$	756 vs
935 s	911 m	900 m	-	886 w	-	830 w	792 m	-
951 vs	925 m	901 w	-	876 s	-	840 s	792 s	-
-	905 s	-	-	874 s	-	833 s	799 s	-
949 vs, 935 vs	905 vs	898 vs	-	881 vs	-	834 s	$795 \mathrm{~s}, 788 \mathrm{~s}$	-
938 m	-	-	896 m	861 m	854 m	-	770 s	-
947 vs, 933 vs	905 s	-	888 s	880 s	850 w	-	756 s	-
938 s	-	-	888 m	867 s	-	-	$812 \mathrm{~s}, 803 \mathrm{vs}$	
947 m	928 m	-	896 m	875 m	830 m	-	795 s	-
947 vs		* Syrup	s98 vs	863 s	-	-	747 s	-

a-D-Mannopyranose
3:4-di-O-methyl-, monohydrate ... 3:4:6-tri-O-methyl-

 $1: 2: 3: 4: 6$-penta- O-acetyl-
Mannan (1:4- β-polysaccharide) Metliyl β-D-mannopyranoside * $2: 3: 4: 6$-tetra-O-acetyl-

$\frac{\text { bsorption peaks }}{830-855 \mathrm{~cm}^{-1}}$
$933 \mathrm{~s}, 903 \mathrm{~s}$
$935 \mathrm{vs}, 903 \mathrm{vs}, 892 \mathrm{vs}$
$929 \mathrm{~s}, 914 \mathrm{~s}, 898 \mathrm{~m}, 889 \mathrm{~m}, 878 \mathrm{~s}$
$934 \mathrm{vs}, 901 \mathrm{vs}, 882 \mathrm{~s}, 873 \mathrm{vs}$
$938 \mathrm{~s}, 896 \mathrm{~s}$

$940 \mathrm{~m}, 909 \mathrm{~s}, 895 \mathrm{~s}, 878 \mathrm{~s}$
895 m
$930 \mathrm{w}, 894 \mathrm{~s}, 876 \mathrm{~s}$
$935 \mathrm{~m}, 920 \mathrm{~m}, 896 \mathrm{~s}$
$937 \mathrm{~m}, 886 \mathrm{~s}$
$947 \mathrm{~m}, 914 \mathrm{~m}, 898 \mathrm{~m}, 879 \mathrm{w}, 861 \mathrm{w}$
$938 \mathrm{vs}, 914 \mathrm{~s}, 878 \mathrm{~s}$
$941 \mathrm{~m}, 890 \mathrm{~s}$
$938 \mathrm{~s}, 930 \mathrm{~s}, 890 \mathrm{~s}, 870 \mathrm{~m}$
$944 \mathrm{~m}, 923 \mathrm{~m}, 882 \mathrm{~s}$
$933 \mathrm{vs}, 905 \mathrm{~s}$ $X=H ; \quad Y=O H . \quad$ Equatorial

Compound

$\alpha-\mathrm{D}-\mathrm{Xy}$ lopyranose

 Metliyl α-D-xylopyranoside
β-L-Xylopyranose

1:2:3:4-tetra-O-acetylXylan (β-1: 4-D-polysacc.) Methyl β-D-xylopyranoside .

2:3:4-tri-O-methyl-
α-D-Arabopyranose
1:2:3:4-tetra-O-acetyl-
Methyl α-D-arabopyranoside
2.3 : 4-tri- O-acetyl-1-brom

Methyl β-D-arabopyranoside
arabinose series, the presence or absence of absorption at $830-855 \mathrm{~cm} .^{-1}$ again seems to afford a good method of differentiating between α - and β-forms; it is interesting that in this case it is the β-compounds which show the absorption in the region of the $2 a$ band of hexoses, but we prefer at this stage not to assign the vibration. The xylopyranose series

Table 5.

	Absorption (cm. ${ }^{-1}$) of :			
Pyranose sugar derivatives of :	Type 2a	Type $2 b$	Type 2c	Type 3
α-D-Glucose β-D-Glucose	${ }^{843} \pm 4$	$890+8\}$	-	753 ± 17
$\underset{\beta-\text { - }- \text {-Galactose }}{ }$	825 ± 11			752 ± 20
${ }_{\alpha-\text {-D-Galactose }}^{\beta \text { - }}$		$895 \pm 9\}$		
β-d-Mannose	± 8	$893 \pm 6\}$	876 ± 9	791 ± 18

is exceptional inasmuch as neither the α - nor the β-anomers show absorption at 830 $855 \mathrm{~cm} .^{-1}$; however, the presence or absence of type 3 absorption ($749 \pm 10 \mathrm{~cm} .^{-1}$) can apparently be used here for the differentiation of anomers.

It is to be expected that optical enantiomorphs will show identical infra-red spectra (provided that they have been isolated in the same crystalline form), and this was found to be the case, over the frequency range $1790-630 \mathrm{~cm}^{-1}$, for the D - and L -forms of β-arabopyranose, methyl α-arabopyranoside, β-xylopyranose tetra-acetate, and α-xylopyranose. It follows, therefore, that the conclusions reached above are equally valid for the D - and the L -series.

Type $2 c$ absorption, displayed by derivatives of D-galactopyranose and D-mannopyranose (irrespective of their anomeric configuration) but not by derivatives of D-glucose, seems to offer a useful method for distinguishing between derivatives of these three hexoses which are identically substituted. In addition it may prove valuable in the polysaccharide field for distinguishing a polyglucosan from a polymannan or a polygalactan. It is shown also by the galactose-containing disaccharides; for example, melibiose and lactose each has a peak at $872 \mathrm{~cm} .^{-1}$, which is absent from the spectra of i somaltose and cellobiose.

Caution must be exercised in any interpretation of the infra-red spectra of syrups since a marked peak movement was observed in passing from crystalline to syrupy glucose. A syrupy α, β-mixture of D -glucose showed both type $2 a$ and $2 b$ absorption peaks, but these were somewhat displaced from their usual positions. Thus absorption of type $2 a$, present in crystalline α-d-glucose at $837 \mathrm{~cm} .^{-1}$, now appeared at $849 \mathrm{~cm} .^{-1}$.

Evidence for Assignment.-It was suggested in Part I that the vibrations associated with type $2 a$ and $2 b$ absorptions were $\mathrm{C}-\mathrm{H}$ deformations in which the hydrogen on $\mathrm{C}_{(1)}$ was involved intimately. It was believed that the difference between the α - and the β-glucose frequencies was related to the fact that this hydrogen atom in the α-anomer lies in the equatorial belt of the chair form of the six-membered ring and in the β-anomer in the axial position. It may be that, as in tetrahydropyran (Burket and Badger, loc. cit.), the axial hydrogen atoms on $\mathrm{C}_{(1)}$ and $\mathrm{C}_{(5)}$ of a pyranose sugar ring are closer together than in cyclohexane, and those on $\mathrm{C}_{(2)}$ and $\mathrm{C}_{(4)}$ are further apart. Since the most stable conformation of a D-glucopyranose ring involves an axial hydrogen atom on $C_{(5)}$, it is possible that during deformation the axial hydrogen atoms on $\mathrm{C}_{(1)}$ and $\mathrm{C}_{(5)}$ come into van der Waals contact, or very nearly so, and that this leads to an increased frequency.

Additional evidence for the assignment of type $2 a$ absorption to an equatorial $\mathrm{C}_{(1)}-\mathrm{H}$ deformation is that, besides derivatives of α-D-glucopyranose, those of α-D-galactopyranose and α-D-mannopyranose also display type $2 a$ absorption (Table 5), and this absorption is independent of O-substituents. All of these sugars, in the most stable conformation of their pyranose rings, are known to have an equatorial hydrogen atom on $\mathrm{C}_{(1)}$. It remains to be seen whether pentoses in general exhibit type $2 a$ absorption; if they do, then the absorption at $830-855 \mathrm{~cm} .^{-1}$ in derivatives of β-D-arabinose is consistent with this generalisation, and the only exceptions, as yet, are the derivatives of α-D-xylopyranose which have a $\mathrm{C}_{(1)}-\mathrm{H}$ in the equatorial position and yet fail to display absorption in this
range. The reason for this may be that the lack of a hydroxymethyl group on $\mathrm{C}_{(5)}$ and the absence of any axial hydroxyl group round the ring (other than on $\mathrm{C}_{(1)}$) markedly reduce the change of dipole moment during the equatorial $\mathrm{C}_{(1)}-\mathrm{H}$ deformation.

Type $2 b$ absorption is shown by derivatives of β-D-glucopyranose, β-D-galactopyranose, and β-D-mannopyranose, all of which have an axial $\mathrm{C}_{(1)^{-}}-\mathrm{H}$ in their most stable conformation. If this generalisation is applicable to pentoses, then suitable candidates can be found in the spectra of pyranose derivatives of $\alpha-\mathrm{D}-$ arabinose and β-D-xylose.

In a strict comparison of the corresponding derivatives of D -galactopyranose and D-mannopyranose with those of D -glucopyranose, the derivatives of the two former hexoses almost invariably displayed an extra absorption peak (type $2 c$) at $c a .875 \mathrm{~cm}^{-1}$ (Table 5), which appeared to be independent of O-substituents, and of anomeric character. It is believed that this absorption is due to deformations of the equatorial $\mathrm{C}-\mathrm{H}$ bonds at positions 4 and 2 in galactopyranose and mannopyranose, respectively. Such a rise of frequency from ca. $840 \mathrm{~cm} .^{-1}$ for a $\mathrm{C}_{(1)}-\mathrm{H}$ equatorial deformation to $c a .875 \mathrm{~cm} .^{-1}$ for a $\mathrm{C}_{(2)}-\mathrm{H}$ or $\mathrm{C}_{(4)}-\mathrm{H}$ equatorial deformation is consistent with subjection of the equatorial hydrogen atoms on $\mathrm{C}_{(2)}$ and $\mathrm{C}_{(4)}$ to van der Waals forces from neighbouring groups which are stronger than those affecting the equatorial hydrogen on $\mathrm{C}_{(1)}$.

Finally, to the question of the value of the deformation frequency of an axial $\mathrm{C}-\mathrm{H}$ group, other than $\mathrm{C}_{(1)}-\mathrm{H}$, no answer can be given because the region above $890 \mathrm{~cm}^{-1}$, where such an absorption might occur, also contains absorption peaks due to type 1 vibrations and to the in-phase $\mathrm{C}-\mathrm{O}$ stretching mode of methyl ethers and of acetates.

As mentioned in Part I, the type 3 peak intensity is very sensitive to changes in sugar configuration; thus decreased intensity was observed in derivatives of β-D-glucopyranose, which possesses no axial $\mathrm{C}-\mathrm{O}$ bonds. This decrease is even more marked in derivatives of β-D-xylopyranose, which differs from β-D-glucopyranose only in the absence of a hydroxymethyl group on $C_{(5)}$, no absorption of type 3 being observed in any derivative so far studied. The symmetrical character of the vibration is emphasised also by scylloinositol, a centrosymmetrical cyclitol, in which all the $\mathrm{C}-\mathrm{O}$ bonds are equatorial, and which does not display type 3 absorption in the infra-red, in agreement with the selection rules. The lower frequencies of the type 3 absorption in sugars, and more particularly of their fully substituted acetates, compared with that observed in tetrahydropyran ($813 \mathrm{~cm} .^{-1}$), is to be expected from the extra weight involved.

Since the publication of our first paper on this topic, Whistler and House (Analyt. Chem., 1953, 25, 1463) have reported independently that infra-red spectra can be used to distinguish between anomeric forms of carbohydrates; many of the characteristic bands were however in a higher frequency range than those reported herein.

The authors are indebted to Professor M. Stacey, F.R.S., for his close interest in this work and for providing reference compounds from his collection. They are also indebted to many other colleagues for the generous provision of samples. They thank the British Rayon Research Association and Courtaulds' Scientific and Educational Trust Fund for the award of scholarships (to S. A. B. and R. S.), and the Royal Society for a grant for the purchase of the spectrometer. A contribution to the expenses of the investigation was made by the British Rayon Research Association.

